\(\int \cot ^4(c+d x) \csc ^3(c+d x) (a+a \sin (c+d x)) \, dx\) [375]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F(-1)]
   Maxima [A] (verification not implemented)
   Giac [B] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 27, antiderivative size = 98 \[ \int \cot ^4(c+d x) \csc ^3(c+d x) (a+a \sin (c+d x)) \, dx=-\frac {a \text {arctanh}(\cos (c+d x))}{16 d}-\frac {a \cot ^5(c+d x)}{5 d}-\frac {a \cot (c+d x) \csc (c+d x)}{16 d}+\frac {a \cot (c+d x) \csc ^3(c+d x)}{8 d}-\frac {a \cot ^3(c+d x) \csc ^3(c+d x)}{6 d} \]

[Out]

-1/16*a*arctanh(cos(d*x+c))/d-1/5*a*cot(d*x+c)^5/d-1/16*a*cot(d*x+c)*csc(d*x+c)/d+1/8*a*cot(d*x+c)*csc(d*x+c)^
3/d-1/6*a*cot(d*x+c)^3*csc(d*x+c)^3/d

Rubi [A] (verified)

Time = 0.12 (sec) , antiderivative size = 98, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.222, Rules used = {2917, 2691, 3853, 3855, 2687, 30} \[ \int \cot ^4(c+d x) \csc ^3(c+d x) (a+a \sin (c+d x)) \, dx=-\frac {a \text {arctanh}(\cos (c+d x))}{16 d}-\frac {a \cot ^5(c+d x)}{5 d}-\frac {a \cot ^3(c+d x) \csc ^3(c+d x)}{6 d}+\frac {a \cot (c+d x) \csc ^3(c+d x)}{8 d}-\frac {a \cot (c+d x) \csc (c+d x)}{16 d} \]

[In]

Int[Cot[c + d*x]^4*Csc[c + d*x]^3*(a + a*Sin[c + d*x]),x]

[Out]

-1/16*(a*ArcTanh[Cos[c + d*x]])/d - (a*Cot[c + d*x]^5)/(5*d) - (a*Cot[c + d*x]*Csc[c + d*x])/(16*d) + (a*Cot[c
 + d*x]*Csc[c + d*x]^3)/(8*d) - (a*Cot[c + d*x]^3*Csc[c + d*x]^3)/(6*d)

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rule 2687

Int[sec[(e_.) + (f_.)*(x_)]^(m_)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[1/f, Subst[Int[(b*x)
^n*(1 + x^2)^(m/2 - 1), x], x, Tan[e + f*x]], x] /; FreeQ[{b, e, f, n}, x] && IntegerQ[m/2] &&  !(IntegerQ[(n
- 1)/2] && LtQ[0, n, m - 1])

Rule 2691

Int[((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[b*(a*Sec[e +
 f*x])^m*((b*Tan[e + f*x])^(n - 1)/(f*(m + n - 1))), x] - Dist[b^2*((n - 1)/(m + n - 1)), Int[(a*Sec[e + f*x])
^m*(b*Tan[e + f*x])^(n - 2), x], x] /; FreeQ[{a, b, e, f, m}, x] && GtQ[n, 1] && NeQ[m + n - 1, 0] && Integers
Q[2*m, 2*n]

Rule 2917

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((a_) + (b_.)*sin[(e_.) + (f_.)
*(x_)]), x_Symbol] :> Dist[a, Int[(g*Cos[e + f*x])^p*(d*Sin[e + f*x])^n, x], x] + Dist[b/d, Int[(g*Cos[e + f*x
])^p*(d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, g, n, p}, x]

Rule 3853

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Csc[c + d*x])^(n - 1)/(d*(n
- 1))), x] + Dist[b^2*((n - 2)/(n - 1)), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n,
 1] && IntegerQ[2*n]

Rule 3855

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps \begin{align*} \text {integral}& = a \int \cot ^4(c+d x) \csc ^2(c+d x) \, dx+a \int \cot ^4(c+d x) \csc ^3(c+d x) \, dx \\ & = -\frac {a \cot ^3(c+d x) \csc ^3(c+d x)}{6 d}-\frac {1}{2} a \int \cot ^2(c+d x) \csc ^3(c+d x) \, dx+\frac {a \text {Subst}\left (\int x^4 \, dx,x,-\cot (c+d x)\right )}{d} \\ & = -\frac {a \cot ^5(c+d x)}{5 d}+\frac {a \cot (c+d x) \csc ^3(c+d x)}{8 d}-\frac {a \cot ^3(c+d x) \csc ^3(c+d x)}{6 d}+\frac {1}{8} a \int \csc ^3(c+d x) \, dx \\ & = -\frac {a \cot ^5(c+d x)}{5 d}-\frac {a \cot (c+d x) \csc (c+d x)}{16 d}+\frac {a \cot (c+d x) \csc ^3(c+d x)}{8 d}-\frac {a \cot ^3(c+d x) \csc ^3(c+d x)}{6 d}+\frac {1}{16} a \int \csc (c+d x) \, dx \\ & = -\frac {a \text {arctanh}(\cos (c+d x))}{16 d}-\frac {a \cot ^5(c+d x)}{5 d}-\frac {a \cot (c+d x) \csc (c+d x)}{16 d}+\frac {a \cot (c+d x) \csc ^3(c+d x)}{8 d}-\frac {a \cot ^3(c+d x) \csc ^3(c+d x)}{6 d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.18 (sec) , antiderivative size = 175, normalized size of antiderivative = 1.79 \[ \int \cot ^4(c+d x) \csc ^3(c+d x) (a+a \sin (c+d x)) \, dx=-\frac {a \cot ^5(c+d x)}{5 d}-\frac {a \csc ^2\left (\frac {1}{2} (c+d x)\right )}{64 d}+\frac {a \csc ^4\left (\frac {1}{2} (c+d x)\right )}{64 d}-\frac {a \csc ^6\left (\frac {1}{2} (c+d x)\right )}{384 d}-\frac {a \log \left (\cos \left (\frac {1}{2} (c+d x)\right )\right )}{16 d}+\frac {a \log \left (\sin \left (\frac {1}{2} (c+d x)\right )\right )}{16 d}+\frac {a \sec ^2\left (\frac {1}{2} (c+d x)\right )}{64 d}-\frac {a \sec ^4\left (\frac {1}{2} (c+d x)\right )}{64 d}+\frac {a \sec ^6\left (\frac {1}{2} (c+d x)\right )}{384 d} \]

[In]

Integrate[Cot[c + d*x]^4*Csc[c + d*x]^3*(a + a*Sin[c + d*x]),x]

[Out]

-1/5*(a*Cot[c + d*x]^5)/d - (a*Csc[(c + d*x)/2]^2)/(64*d) + (a*Csc[(c + d*x)/2]^4)/(64*d) - (a*Csc[(c + d*x)/2
]^6)/(384*d) - (a*Log[Cos[(c + d*x)/2]])/(16*d) + (a*Log[Sin[(c + d*x)/2]])/(16*d) + (a*Sec[(c + d*x)/2]^2)/(6
4*d) - (a*Sec[(c + d*x)/2]^4)/(64*d) + (a*Sec[(c + d*x)/2]^6)/(384*d)

Maple [A] (verified)

Time = 0.32 (sec) , antiderivative size = 118, normalized size of antiderivative = 1.20

method result size
derivativedivides \(\frac {-\frac {a \left (\cos ^{5}\left (d x +c \right )\right )}{5 \sin \left (d x +c \right )^{5}}+a \left (-\frac {\cos ^{5}\left (d x +c \right )}{6 \sin \left (d x +c \right )^{6}}-\frac {\cos ^{5}\left (d x +c \right )}{24 \sin \left (d x +c \right )^{4}}+\frac {\cos ^{5}\left (d x +c \right )}{48 \sin \left (d x +c \right )^{2}}+\frac {\left (\cos ^{3}\left (d x +c \right )\right )}{48}+\frac {\cos \left (d x +c \right )}{16}+\frac {\ln \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )}{16}\right )}{d}\) \(118\)
default \(\frac {-\frac {a \left (\cos ^{5}\left (d x +c \right )\right )}{5 \sin \left (d x +c \right )^{5}}+a \left (-\frac {\cos ^{5}\left (d x +c \right )}{6 \sin \left (d x +c \right )^{6}}-\frac {\cos ^{5}\left (d x +c \right )}{24 \sin \left (d x +c \right )^{4}}+\frac {\cos ^{5}\left (d x +c \right )}{48 \sin \left (d x +c \right )^{2}}+\frac {\left (\cos ^{3}\left (d x +c \right )\right )}{48}+\frac {\cos \left (d x +c \right )}{16}+\frac {\ln \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )}{16}\right )}{d}\) \(118\)
parallelrisch \(\frac {\left (\ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )-\frac {13 \left (\csc ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \left (\sec \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\cos \left (d x +c \right )+\frac {47 \cos \left (3 d x +3 c \right )}{78}+\frac {\cos \left (5 d x +5 c \right )}{26}\right ) \csc \left (\frac {d x}{2}+\frac {c}{2}\right )+\frac {32 \cos \left (d x +c \right )}{13}+\frac {16 \cos \left (3 d x +3 c \right )}{13}+\frac {16 \cos \left (5 d x +5 c \right )}{65}\right ) \left (\sec ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{512}\right ) a}{16 d}\) \(121\)
risch \(\frac {a \left (15 \,{\mathrm e}^{11 i \left (d x +c \right )}+235 \,{\mathrm e}^{9 i \left (d x +c \right )}-240 i {\mathrm e}^{10 i \left (d x +c \right )}+390 \,{\mathrm e}^{7 i \left (d x +c \right )}+240 i {\mathrm e}^{8 i \left (d x +c \right )}+390 \,{\mathrm e}^{5 i \left (d x +c \right )}-480 i {\mathrm e}^{6 i \left (d x +c \right )}+235 \,{\mathrm e}^{3 i \left (d x +c \right )}+480 i {\mathrm e}^{4 i \left (d x +c \right )}+15 \,{\mathrm e}^{i \left (d x +c \right )}-48 i {\mathrm e}^{2 i \left (d x +c \right )}+48 i\right )}{120 d \left ({\mathrm e}^{2 i \left (d x +c \right )}-1\right )^{6}}-\frac {a \ln \left ({\mathrm e}^{i \left (d x +c \right )}+1\right )}{16 d}+\frac {a \ln \left ({\mathrm e}^{i \left (d x +c \right )}-1\right )}{16 d}\) \(186\)
norman \(\frac {-\frac {a}{384 d}-\frac {a \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{160 d}+\frac {a \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{192 d}+\frac {a \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{40 d}+\frac {a \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{64 d}-\frac {a \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{32 d}+\frac {a \left (\tan ^{9}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{32 d}-\frac {a \left (\tan ^{10}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{64 d}-\frac {a \left (\tan ^{11}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{40 d}-\frac {a \left (\tan ^{12}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{192 d}+\frac {a \left (\tan ^{13}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{160 d}+\frac {a \left (\tan ^{14}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{384 d}+\frac {a \left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{64 d}}{\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{6} \left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}+\frac {a \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{16 d}\) \(254\)

[In]

int(cos(d*x+c)^4*csc(d*x+c)^7*(a+a*sin(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

1/d*(-1/5*a/sin(d*x+c)^5*cos(d*x+c)^5+a*(-1/6/sin(d*x+c)^6*cos(d*x+c)^5-1/24/sin(d*x+c)^4*cos(d*x+c)^5+1/48/si
n(d*x+c)^2*cos(d*x+c)^5+1/48*cos(d*x+c)^3+1/16*cos(d*x+c)+1/16*ln(csc(d*x+c)-cot(d*x+c))))

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 187 vs. \(2 (88) = 176\).

Time = 0.29 (sec) , antiderivative size = 187, normalized size of antiderivative = 1.91 \[ \int \cot ^4(c+d x) \csc ^3(c+d x) (a+a \sin (c+d x)) \, dx=\frac {96 \, a \cos \left (d x + c\right )^{5} \sin \left (d x + c\right ) + 30 \, a \cos \left (d x + c\right )^{5} + 80 \, a \cos \left (d x + c\right )^{3} - 30 \, a \cos \left (d x + c\right ) - 15 \, {\left (a \cos \left (d x + c\right )^{6} - 3 \, a \cos \left (d x + c\right )^{4} + 3 \, a \cos \left (d x + c\right )^{2} - a\right )} \log \left (\frac {1}{2} \, \cos \left (d x + c\right ) + \frac {1}{2}\right ) + 15 \, {\left (a \cos \left (d x + c\right )^{6} - 3 \, a \cos \left (d x + c\right )^{4} + 3 \, a \cos \left (d x + c\right )^{2} - a\right )} \log \left (-\frac {1}{2} \, \cos \left (d x + c\right ) + \frac {1}{2}\right )}{480 \, {\left (d \cos \left (d x + c\right )^{6} - 3 \, d \cos \left (d x + c\right )^{4} + 3 \, d \cos \left (d x + c\right )^{2} - d\right )}} \]

[In]

integrate(cos(d*x+c)^4*csc(d*x+c)^7*(a+a*sin(d*x+c)),x, algorithm="fricas")

[Out]

1/480*(96*a*cos(d*x + c)^5*sin(d*x + c) + 30*a*cos(d*x + c)^5 + 80*a*cos(d*x + c)^3 - 30*a*cos(d*x + c) - 15*(
a*cos(d*x + c)^6 - 3*a*cos(d*x + c)^4 + 3*a*cos(d*x + c)^2 - a)*log(1/2*cos(d*x + c) + 1/2) + 15*(a*cos(d*x +
c)^6 - 3*a*cos(d*x + c)^4 + 3*a*cos(d*x + c)^2 - a)*log(-1/2*cos(d*x + c) + 1/2))/(d*cos(d*x + c)^6 - 3*d*cos(
d*x + c)^4 + 3*d*cos(d*x + c)^2 - d)

Sympy [F(-1)]

Timed out. \[ \int \cot ^4(c+d x) \csc ^3(c+d x) (a+a \sin (c+d x)) \, dx=\text {Timed out} \]

[In]

integrate(cos(d*x+c)**4*csc(d*x+c)**7*(a+a*sin(d*x+c)),x)

[Out]

Timed out

Maxima [A] (verification not implemented)

none

Time = 0.22 (sec) , antiderivative size = 106, normalized size of antiderivative = 1.08 \[ \int \cot ^4(c+d x) \csc ^3(c+d x) (a+a \sin (c+d x)) \, dx=\frac {5 \, a {\left (\frac {2 \, {\left (3 \, \cos \left (d x + c\right )^{5} + 8 \, \cos \left (d x + c\right )^{3} - 3 \, \cos \left (d x + c\right )\right )}}{\cos \left (d x + c\right )^{6} - 3 \, \cos \left (d x + c\right )^{4} + 3 \, \cos \left (d x + c\right )^{2} - 1} - 3 \, \log \left (\cos \left (d x + c\right ) + 1\right ) + 3 \, \log \left (\cos \left (d x + c\right ) - 1\right )\right )} - \frac {96 \, a}{\tan \left (d x + c\right )^{5}}}{480 \, d} \]

[In]

integrate(cos(d*x+c)^4*csc(d*x+c)^7*(a+a*sin(d*x+c)),x, algorithm="maxima")

[Out]

1/480*(5*a*(2*(3*cos(d*x + c)^5 + 8*cos(d*x + c)^3 - 3*cos(d*x + c))/(cos(d*x + c)^6 - 3*cos(d*x + c)^4 + 3*co
s(d*x + c)^2 - 1) - 3*log(cos(d*x + c) + 1) + 3*log(cos(d*x + c) - 1)) - 96*a/tan(d*x + c)^5)/d

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 201 vs. \(2 (88) = 176\).

Time = 0.36 (sec) , antiderivative size = 201, normalized size of antiderivative = 2.05 \[ \int \cot ^4(c+d x) \csc ^3(c+d x) (a+a \sin (c+d x)) \, dx=\frac {5 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{6} + 12 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 15 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} - 60 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 15 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 120 \, a \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}\right ) + 120 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \frac {294 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{6} + 120 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 15 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} - 60 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 15 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 12 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 5 \, a}{\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{6}}}{1920 \, d} \]

[In]

integrate(cos(d*x+c)^4*csc(d*x+c)^7*(a+a*sin(d*x+c)),x, algorithm="giac")

[Out]

1/1920*(5*a*tan(1/2*d*x + 1/2*c)^6 + 12*a*tan(1/2*d*x + 1/2*c)^5 - 15*a*tan(1/2*d*x + 1/2*c)^4 - 60*a*tan(1/2*
d*x + 1/2*c)^3 - 15*a*tan(1/2*d*x + 1/2*c)^2 + 120*a*log(abs(tan(1/2*d*x + 1/2*c))) + 120*a*tan(1/2*d*x + 1/2*
c) - (294*a*tan(1/2*d*x + 1/2*c)^6 + 120*a*tan(1/2*d*x + 1/2*c)^5 - 15*a*tan(1/2*d*x + 1/2*c)^4 - 60*a*tan(1/2
*d*x + 1/2*c)^3 - 15*a*tan(1/2*d*x + 1/2*c)^2 + 12*a*tan(1/2*d*x + 1/2*c) + 5*a)/tan(1/2*d*x + 1/2*c)^6)/d

Mupad [B] (verification not implemented)

Time = 10.26 (sec) , antiderivative size = 337, normalized size of antiderivative = 3.44 \[ \int \cot ^4(c+d x) \csc ^3(c+d x) (a+a \sin (c+d x)) \, dx=\frac {a\,\left (5\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{12}-5\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{12}+12\,\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{11}-12\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{11}\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )-15\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{10}-60\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^9-15\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^8+120\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^7-120\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^7\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5+15\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^8\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4+60\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^9\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3+15\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{10}\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+120\,\ln \left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6\right )}{1920\,d\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6} \]

[In]

int((cos(c + d*x)^4*(a + a*sin(c + d*x)))/sin(c + d*x)^7,x)

[Out]

(a*(5*sin(c/2 + (d*x)/2)^12 - 5*cos(c/2 + (d*x)/2)^12 + 12*cos(c/2 + (d*x)/2)*sin(c/2 + (d*x)/2)^11 - 12*cos(c
/2 + (d*x)/2)^11*sin(c/2 + (d*x)/2) - 15*cos(c/2 + (d*x)/2)^2*sin(c/2 + (d*x)/2)^10 - 60*cos(c/2 + (d*x)/2)^3*
sin(c/2 + (d*x)/2)^9 - 15*cos(c/2 + (d*x)/2)^4*sin(c/2 + (d*x)/2)^8 + 120*cos(c/2 + (d*x)/2)^5*sin(c/2 + (d*x)
/2)^7 - 120*cos(c/2 + (d*x)/2)^7*sin(c/2 + (d*x)/2)^5 + 15*cos(c/2 + (d*x)/2)^8*sin(c/2 + (d*x)/2)^4 + 60*cos(
c/2 + (d*x)/2)^9*sin(c/2 + (d*x)/2)^3 + 15*cos(c/2 + (d*x)/2)^10*sin(c/2 + (d*x)/2)^2 + 120*log(sin(c/2 + (d*x
)/2)/cos(c/2 + (d*x)/2))*cos(c/2 + (d*x)/2)^6*sin(c/2 + (d*x)/2)^6))/(1920*d*cos(c/2 + (d*x)/2)^6*sin(c/2 + (d
*x)/2)^6)